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Abstract
Despite the significant improvements in speaker recognition en-
abled by deep neural networks, unsatisfactory performance per-
sists under far-field scenarios due to the effects of the long range
fading, room reverberation, and environmental noises. In this
study, we focus on far-field speaker recognition with a micro-
phone array. We propose a multi-channel training framework
for the deep speaker embedding neural network on noisy and re-
verberant data. The proposed multi-channel training framework
simultaneously processes the time-, frequency- and channel-
information to learn a robust deep speaker embedding. Based
on the 2-dimensional or 3-dimensional convolution layer, we
investigate different multi-channel training schemes. Exper-
iments on the simulated multi-channel reverberant and noisy
data show that the proposed method obtains significant im-
provements over the single-channel trained deep speaker em-
bedding system with front end speech enhancement or multi-
channel embedding fusion.
Index Terms: speaker recognition, far-eld microphone array,
multi-channel training, deep embeddings

1. Introduction
Automatic speaker verification (ASV) refers to accept or reject
a claimed speaker by analyzing the speech. It is widely used in
many real-world biometric authentication applications such as
call center, mobile payment systems, personalized services of
smart speakers and so on.[1].

In the past decade, the performance of speaker recogni-
tion has improved significantly. The i-vector based method [2]
and the deep neural network (DNN) based methods [3, 4] have
promoted the development of speaker recognition technology
in telephone channel and closed talking scenarios. However,
speaker recognition under far-field and complex environmental
settings is still challenging due to the effects of the long range
fading, room reverberation, and complex environmental noises.
Speech signal propagating in long range suffers from fading,
absorption and reflection by various objects, which change the
pressure level at different frequencies and degrade the signal
quality [5]. Reverberation includes early reverberation and late
reverberation. Early reverberation (i.e., reflections within 50 to
100 ms after the direct wave arrives at the microphone) can im-
prove the received speech quality, while late reverberation will
damage speech. The adverse effects of reverberation on speech
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signal includes smearing spectro-temporal structures, amplify-
ing the low-frequency energy, and flattening the formant tran-
sitions, etc. [6]. Also, the complex environmental noises “fill
in” regions with low speech energy in the time-frequency plane
and blur the spectral details [5]. These effects result in the
loss of speech intelligibility and speech quality, imposing great
challenges in far-field speaker recognition and far-field speech
recognition.

To compensate the adverse impacts of room reverberation
and environmental noise, various approaches, based on single-
channel microphone or multi-channel microphone array, have
been proposed at different stages of the ASV system. At the sig-
nal level, linear prediction inverse modulation transfer function
[7] and weighted prediction error (WPE) [8, 9] methods have
been used for dereverberation. DNN based denoising meth-
ods for single-channel speech enhancement [10, 11, 12, 13] and
beamforming for multi-channel speech enhancement [9, 14, 15]
have also been investigated for ASV under complex environ-
ment. At feature level, sub-band Hilbert envelopes based
features [16, 17, 18], warped minimum variance distortion-
less response (MVDR) cepstral coefficients [19], blind spectral
weighting (BSW) based features [20], power-normalized cep-
stral coefficients (PNCC) [21, 22] and DNN bottleneck features
[23] have been applied to ASV system to suppress the adverse
impacts of reverberation and noise. At the model level, rever-
beration matching with multi-condition training models have
been successfully employed within the universal background
model (UBM) or i-vector based front-end systems [24, 25].
Multi-channel i-vector combination for far-field speaker recog-
nition is also explored in [26]. In back-end modeling, multi-
condition training of probabilistic linear discriminant analysis
(PLDA) models was employed in i-vector system [27]. The
robustness of deep speaker embeddings for far-field speech
has also been investigated in [22, 28]. Finally, at the score
level, score normalization [24] and multi-channel score fusion
[29, 30] have been applied in far-field ASV system to improve
the robustness.

In this study, we focus on far-field speaker recognition at
the model level. A multi-channel training framework based on
the state-of-the-art deep speaker embedding network is used for
far-field speaker recognition under the reverberant and noisy en-
vironment with a multi-channel microphone array. The multi-
channel training framework utilizes the information carried
out by multiple speech observations at different spatial loca-
tions and simultaneously processes the time-, frequency- and
channel-information to learn a robust deep speaker embedding.
Based on 2-dimensional (2D) or 3-dimensional (3D) convolu-
tion layer, we investigate three different multi-channel training
schemes: 2D convolution with multi-channel 2D input features,
3D convolution with 3D input features, and incorporating 3D
convolution with 2D convolution. To the best of our knowl-
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Figure 1: Deep speaker embedding framework

edge, this study is the first work to investigate the DNN speaker
embedding system for reverberant and noisy speech from a mi-
crophone array with multi-channel training framework.

2. Deep Speaker Embedding
In this section, we describe the deep speaker embedding frame-
work. As demonstrated in figure 1, it consists of a local pat-
tern extraction network, an utterance-level encoding layer, and
fully-connected layers for speaker embedding and speaker clas-
sification.

To simulate the real-world test utterance with variable
length in the training stage, the network takes variable length
feature sequence as input and produce utterance level result.
Given the input feature sequence, the local pattern extractor
learns high-level representations at the frame-level. Typically,
the local pattern extractor can be a convolutional neural net-
work (CNN) [4] or a time-delayed neural network (TDNN) [3].
After the front-end local pattern extractor, the output is still a
temporal representation of the input feature. An encoding layer
is then applied on top of the frame level representations to ag-
gregate them into an utterance level representation. Several en-
coding methods has been investigated under the deep speaker
embedding framework. The most common one is the average
pooling layer, which aggregates the statistics (i.e., mean, or
mean and standard deviation) over the whole utterance [3, 4].
Self-attentive pooling layer [31], learnable dictionary encoding
(LDE) layer [32], long-short-term memory (LSTM) layer [33],
dictionary-based NetVLAD layer [34, 35] also have been pro-
posed to serve the encoding layers. The utterance level repre-
sentation after the encoding layer is further processed through a
fully connected layer followed by a speaker classifier.

After training, the utterance level speaker embedding can
be extracted after the penultimate layer of the neural network
for the given variable-length feature sequence.

In this method, we adopt a residual convolutional neural
network (ResNet) [36] as the local pattern extractor. For a given
feature sequence, the ResNets learned descriptions are a three-
dimensional tensor block of shape C × H × W , where C de-
notes the number of channels, H and W denotes the height
and width of the feature maps. To get the single utterance-
level representation, we adopt a global average pooling (GAP)
layer, which accumulates mean statistics along with the time-
frequency axis. Given feature maps F ∈ RC×H×W , the out-
put of GAP is a fixed-dimensional utterance-level representa-
tion V = [v1, v2, · · · , vC ], where vc is

vc =
1

H ×W

i=H

i=1

j=W

j=1

Fc,i,j (1)

3. Multi-Channel Training
Given the microphone array with M channels, the spectro-
temporal feature for recording channel m can be represented
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Figure 2: 2D and 3D convolutional layers for multi-channel
training (Freq denotes frequency, Mic denotes microphone ar-
ray channels)

as Xm ∈ RF×T , where F is the feature dimension, and T is
the number of time frame. The features of multi-channel micro-
phone array utterance can be seen as either a multi-channel 2D
features or a 3D feature representation X ∈ RM×F×T .

The feature representation is then fed into the DNN speaker
embedding network with multi-channel input. In this paper, we
explore three multi-channel training schemes based on the deep
speaker embedding network.

3.1. 2D CNN with Multi-Channel 2D Features

Given the multi-channel 2D features, the convolutional layer
with 2-dimensional kernel takes X as M 2D feature planes and
produces the output feature maps of F ∈ RC×H×W , where C
denotes the number of output feature planes, H and W denotes
the height and width of the feature maps. Formally, the cth

feature map of F can be describe as

Fc =
M

m=0

K(c,m) Xm (2)

where K(c,m) is the 2D filter weights for input channel m
and output channel c, and  is the valid 2D cross-correlation
operator.

In this study, the first convolutional layer of the ResNet is
designed to receive multiple channel features. With 2D convo-
lution, the way how multi-channel training work is the same as
processing three color channel picture in computer vision.

3.2. 3D CNN with 3D Features

The second scheme for multi-channel training is the use of 3D
convolutional layers. 3D CNN has been applied for far-field
multi-channel speech recognition in [37]. The 3D convolutional
layer receives 4-dimensional input feature maps with size C ×
D×H×W , where C is the number of feature maps, D, H , W
are the depth, height and width of the feature map respectively.
The output Fout can be defined as

Fout,c =

Cin

k=0

K(c, k)  Fin,k (3)



where K(c, k) is the 3D filter weights for input channel k and
output channel c,  is the valid 3D cross-correlation operator,
Fout,c is the cth feature map of the output feature and Fin,k is
the kth feature map of the input feature.

Figure 2 shows the difference between the 2D and 3D con-
volutional layer. The 3D convolution retains the channel axis
and keeps the channel information in the whole CNN, while
the 2D convolution aggregates the channel information together
into the 2D feature maps after the first convolutional layer.

In this method, all the 2D convolutional layers in the
original ResNet are replaced by the 3D convolutional layers.
In this way, the 3D ResNets learned descriptions are a 4-
dimensional feature maps F ∈ RC×D×H×W . We thus modify
the GAP layer to aggregate the mean statistics along the time-,
frequency- and channel-axis, the output V = [v1, v2, · · · , vC ]
can be represented as

vc =
1

D ×H ×W

i=D

i=1

j=H

j=1

k=W

k=1

Fc,i,j,k (4)

3.3. Incorporate 3D CNN with 2D CNN

As stated before, the 3D convolution retains the channel axis
in the whole CNN, while the 2D convolution drops the chan-
nel axis after the first convolutional layer. However, using 3D
convolutional layers in ResNet may greatly increase the model
size. This motivates us to incorporate the 3D CNN with 2D
CNN. To match the dimension between the 3D convolution fea-
ture maps (4D tensor) and 2D convolution feature maps (3D
tensor), a 3D convolution layer with kernel size of Din × 1× 1
is adapted to covert the 4-dimensional feature maps into a 3-
dimensional feature maps, where Din is designed to match the
channel size of the input feature maps. In this way, the channel
axis of the 4-dimensional feature maps output has length 1, and
it is then reshaped to 3-dimensional feature maps and fed into
the 2D CNN.

4. Corpora and Data Simulation
4.1. Corpora

The AISHELL-ASR0009-[ZH-CN]1 is a Chinese Mandarin
speech recognition dataset. In this study, we use the high-
quality channel of the dataset, which contains 1,997 speakers
with 984,907 close-talk utterances, for training and testing. The
average duration of the utterance is 3.54s. We split the dataset
into two parts, with 1947 speakers for training and 50 speakers
for testing. In the testing set, 20 utterances from each speaker
are selected for enrollment. The 1,000 (20×50) enrolling utter-
ances with 24,001 testing utterances form the final trials, which
contains 23,520,980 non-target trials and 480,020 target trials.
For each trial, we only use one utterance for enrollment, and
one utterance for testing.

4.2. Data Simulation

We use pyroomacoustics [38] to simulate the room acoustic
based on RIR generator using Image Source Model (ISM) al-
gorithm. The width and length of the room size are randomly
set to 4 to 12 meters with a height of 3 meters. A 6-channel
circular microphone array with a radius between 5 to 15 cm is
randomly generated and randomly placed at the center, corner

1The dataset is available at http://www.aishelltech.com/
jcsjnewls

Table 1: The network architecture, C(kernal size, stride) denotes the
convulutional layer, [·] denotes the residual block.

Layer Output Size Structure

Conv1 16× 64× L C(3× 3, 1)

Residual
Layer 1 16× 64× L


C(3× 3, 1)
C(3× 3, 1)


× 2

Residual
Layer 2 32× 32× L

2


C(3× 3, 2)
C(3× 3, 1)

 
C(3× 3, 1)
C(3× 3, 1)



Residual
Layer 3 64× 16× L

4


C(3× 3, 2)
C(3× 3, 1)

 
C(3× 3, 1)
C(3× 3, 1)



Residual
Layer 4 128× 8× L

8


C(3× 3, 2)
C(3× 3, 1)

 
C(3× 3, 1)
C(3× 3, 1)



Encoding 128 Global Average Pooling

Embedding 256 Fully Connected
Output 1947 Fully Connected

or middle front of the room. Then the foreground speech source
is placed at 0.5, 1, 3, 5 or 8 meters from the microphone array.

To simulate the noisy environment, we place the interfer-
ence noise source at 0.5, 2, 4 meters from the microphone ar-
ray with the signal-to-noise ratio (SNR) between 0 to 20 dB.
There are four types of noise: ambient noise, music, televi-
sion, and babble noise. Specifically, the ambient and the music
noise are selected from the MUSAN dataset [39]. The televi-
sion noise is generated with one music file and one speech file
from MUSAN. The babble noise is constructed by mixing three
speech files into one. This results in three overlapping voices
simultaneously with the foreground speech. To simulate the
real training-test condition, we split the whole MUSAN dataset
equally into two subsets. We use half of the noise to generate
the training data, and the whole set to generate the test data.

5. Experimental Results
5.1. Single-Channel Training Results

For the i-vector system, the 20-dimensional MFCCs with
their first and second derivatives are computed for training
a 1024 component Gaussian Mixture Model-Universal Back-
ground Model (GMM-UBM) with full covariance. A single
factor analysis is employed to extract 600-dimensional i-vectors
[2]. Then, Gaussian probabilistic linear discriminant analysis
(PLDA) with full rank is used for modeling and scoring [40].
The training data includes the whole clean training set. We also
use simulated reverberant and noisy data (ivector-AUG) with
clean data together to train PLDA.

For the deep speaker embedding systems, each audio is con-
verted to 64-dimensional Mel-filterbank energies. The front-
end local pattern extractor is based on the well known ResNet-
18 architecture [36]. The detailed architecture is described in
table 1. After training, the speaker embedding adopts cosine
similarity for scoring. In the deep speaker embedding system
with ResNet + GAP setting, a cosine similarity backend is suf-
ficient to achieve good performance [4, 22]. For training data,
the original clean speech is used to train the deep speaker em-
bedding system. We also use simulated reverberant and noisy
data (DNN-AUG) with clean data together to train models and
to reduce the mismatch between training and testing.

In table 2, we report the equal error rate (EER) for single
channel training conditions. The performance of the best and



Table 2: EER for single channel training systems

Testing Condition ivector ivector-AUG DNN DNN-AUG

Clean speech 1.77% 2.02% 1.39% 1.55%

Far-field
speech

best 29.28% 17.21% 28.47% 5.89%
worst 29.49% 17.54% 28.91% 5.97%
fusion 27.74% 14.42% 27.01% 4.95%

+ WPE
best 24.51% 15.12% 24.83% 7.42%
worst 24.87% 15.31% 25.11% 7.71%
fusion 22.94% 12.94% 23.12% 6.17%

+ NN-GEV 21.61% 14.92% 26.18% 7.82%
+ BeamformIt 28.91% 17.28% 30.13% 6.07%

+ WPE + NN-GEV 17.77% 13.59% 21.36% 9.45%

worst channel as well as the embedding level fusion result for
the multi-channel speech are reported. We use weighted pre-
diction error (WPE) [8] for dereverberation, Generalized eigen-
value beamformer with DNN estimated power-spectral density
masks (NN-GEV) [14] and BeamformIt tool with weighted
delay-and-sum [41] for signal enhancement. We used the NN-
GEV model trained by the authors of [8].

Although the performance of the i-vector and DNN em-
bedding system trained with clean speech degrade severely for
reverberant and noisy testing data, training the deep embed-
ding system with clean and simulated far-field speech together
(DNN-AUG) can significantly reduce the mismatch between
training and testing, resulting in 79% reduction in terms of EER.
Moreover, the WPE dereverberation, beamforming techniques,
and the combination of them can improve the performance of
the clean data trained systems. However, for the DNN-AUG
system, the speech enhancement algorithms result in worse per-
formance, partly due to the mismatch between the training data
(clean and corrupted data) and the enhanced speech data.

5.2. Multi-Channel Training Results

Table 3 shows the EER for multi-channel training system.
Speeches from six channels of the circular microphone array
are jointly fed into the multi-channel DNN. Four kinds of multi-
channel training framework are adopted:

• ResNet-18 2D: use 2D convolutional layers, the Conv1
layer in table 1 has 6 input channels.

• ResNet-18 3D: all 2D convolutional layers in ResNet-18
are replaced by 3D convolutional layers.

• 3D conv + ResNet-18 2D: apply a 3D convolutional layer
on top of the ResNet-18 2D architecture.

From the results, all the multi-channel training deep speaker
embedding systems outperform the single-channel training
DNN system with embedding level fusion as well as the i-vector
system with dereverberation and denoising. Comparing to the
single-channel DNN system, the performance of the ResNet-18
2D multi-channel training system achieves 18.18% reduction in
terms of EER, and the ResNet-18 3D system obtains 28.08%
reduction.

5.3. Model Size and System Performance

To investigate the relationship between the model size and the
system performance, we train models with different parameters,
and the results are presented in table 4. To be specific, the nota-
tions we use in table 4 are as follows:

Table 3: EER for multi-channel training systems

Training Condition Model & Testing Condition EER

Single-Channel ResNet-18 embedding fusion 4.95%

Multi-Channel
ResNet-18 2D 4.05%
ResNet-18 3D 3.56%
3D conv + ResNet-18 2D 3.79%

Table 4: Comparison of model size, real-time (RT) factor for embed-
ding extraction, and system performance. Increment of model parame-
ters and reduction of EER for each model comparing to single-channel
trained ResNet-18 are also provided.

System #Parameters RT EER

Single-channel ResNet-18 1233k (-) 0.016×6 4.95% (-)
Single-channel ResNet-54 2804k (127%) 0.042×6 4.60% (7.1%)

ResNet-18 2D 1234k (.8‰) 0.016 4.05% (18%)
ResNet-54 2D 2805k (127%) 0.043 3.46% (30%)

ResNet-18 3D 2607k (111%) 0.543 3.56% (28%)

3D (16) + ResNet-18 2D 1236k (2.4‰) 0.016 4.07% (18%)
3D (32) + ResNet-18 2D 1240k (5.6‰) 0.017 3.93% (21%)
3D (64) + ResNet-18 2D 1246k (1.1%) 0.020 3.92% (21%)
3D (128) + ResNet-18 2D 1259k (2.1%) 0.024 4.00% (19%)
3D (256) + ResNet-18 2D 1285k (4.2%) 0.038 3.79% (23%)

• ResNet-54: 6 residual blocks for each residual layer is
adopted instead of 2 residual blocks for each residual
layer in ResNet-18.

• 3D (k) + ResNet-18 2D: apply a 3D convolutional layer
with k output channels on top of the ResNet-18.

From table 4, we can see that with very little increase in
model parameters, the multi-channel training framework can
significantly improve the system performance comparing to the
single-channel model. The multi-channel trained ResNet-18 2D
model achieves 18% reduction in EER with only 0.8‰ incre-
ments in model parameters. With almost the same number of
parameters, the single-channel trained ResNet-54 model obtains
only 7.1% reduction in EER, while the ResNet-18 3D model
obtains 28% performance gain.

Another benefit of using the multi-channel training frame-
work is the extraction time for deep speaker embedding. The
real-time factor (tested on one CPU core with 2.20GHz) for
embedding extraction is given in table 4. The multi-channel
training schemes have a lower computation time for it receives
multi-channel input to extract one speaker embedding without
extracting multi-channel embedding independently.

6. Conclusions
In this paper, we propose a multi-channel training framework
within the deep speaker embedding network for speaker recog-
nition under reverberant and noisy environment. The method
receives the time-, frequency-, and spatial-information from the
multi-channel input to learn a robust speaker embedding. With
very little increase in model parameters, the proposed method
significantly outperforms the i-vector system with front-end sig-
nal enhancement as well as the single-channel deep speaker em-
bedding system. Future works include testing the multi-channel
framework in real-world far-field data and exploring the multi-
channel training with different input channels.
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